Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
ChemMedChem ; 17(7): e202100641, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1705258

ABSTRACT

The pentafluorosulfanyl (-SF5 ) functional group is of increasing interest as a bioisostere in medicinal chemistry. A library of SF5 -containing compounds, including amide, isoxazole, and oxindole derivatives, was synthesised using a range of solution-based and solventless methods, including microwave and ball-mill techniques. The library was tested against targets including human dihydroorotate dehydrogenase (HDHODH). A subsequent focused approach led to synthesis of analogues of the clinically used disease modifying anti-rheumatic drugs (DMARDs), Teriflunomide and Leflunomide, considered for potential COVID-19 use, where SF5 bioisostere deployment led to improved inhibition of HDHODH compared with the parent drugs. The results demonstrate the utility of the SF5 group in medicinal chemistry.


Subject(s)
Chemistry, Pharmaceutical , Dihydroorotate Dehydrogenase , Amides , Dihydroorotate Dehydrogenase/antagonists & inhibitors , Humans
3.
Nat Rev Microbiol ; 20(5): 299-314, 2022 05.
Article in English | MEDLINE | ID: covidwho-1526083

ABSTRACT

In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.


Subject(s)
COVID-19 , Chiroptera , Animals , Evolution, Molecular , Humans , Phylogeny , SARS-CoV-2/genetics
4.
Ecol Evol ; 11(20): 14012-14023, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1406091

ABSTRACT

The COVID-19 pandemic has highlighted the importance of efficient sampling strategies and statistical methods for monitoring infection prevalence, both in humans and in reservoir hosts. Pooled testing can be an efficient tool for learning pathogen prevalence in a population. Typically, pooled testing requires a second-phase retesting procedure to identify infected individuals, but when the goal is solely to learn prevalence in a population, such as a reservoir host, there are more efficient methods for allocating the second-phase samples.To estimate pathogen prevalence in a population, this manuscript presents an approach for data fusion with two-phased testing of pooled samples that allows more efficient estimation of prevalence with less samples than traditional methods. The first phase uses pooled samples to estimate the population prevalence and inform efficient strategies for the second phase. To combine information from both phases, we introduce a Bayesian data fusion procedure that combines pooled samples with individual samples for joint inferences about the population prevalence.Data fusion procedures result in more efficient estimation of prevalence than traditional procedures that only use individual samples or a single phase of pooled sampling.The manuscript presents guidance on implementing the first-phase and second-phase sampling plans using data fusion. Such methods can be used to assess the risk of pathogen spillover from reservoir hosts to humans, or to track pathogens such as SARS-CoV-2 in populations.

5.
Chem Commun (Camb) ; 57(48): 5909-5912, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1233726

ABSTRACT

The SARS-CoV-2 main viral protease (Mpro) is an attractive target for antivirals given its distinctiveness from host proteases, essentiality in the viral life cycle and conservation across coronaviridae. We launched the COVID Moonshot initiative to rapidly develop patent-free antivirals with open science and open data. Here we report the use of machine learning for de novo design, coupled with synthesis route prediction, in our campaign. We discover novel chemical scaffolds active in biochemical and live virus assays, synthesized with model generated routes.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemical synthesis , Coronavirus OC43, Human/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Drug Design , Drug Discovery/methods , Machine Learning , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL